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Abstract Geological characterization of naturally fractured
reservoirs is potentially associated with large uncertainty.
However, the geological modeling of discrete fracture net-
works (DFN) is considerably disconnected from uncertainty
modeling based on conventional flow simulators in prac-
tice. DFN models provide a geologically consistent way of
modeling fractures in reservoirs. However, flow simulation
of DFN models is currently infeasible at the field scale.
To translate DFN models to dual media descriptions effi-
ciently and rapidly, we propose a geostatistical approach
based on patterns. We will use experimental design to cap-
ture the uncertainties in the fracture description and generate
DFN models. The DFN models are then upscaled to equiva-
lent continuum models. Patterns obtained from the upscaled
DFN models are reduced to a manageable set and used as
training images for multiple-point statistics (MPS). Once
the training images are obtained, they allow for fast realiza-
tion of dual-porosity descriptions with MPS directly, while
circumventing the time-consuming process of DFN model-
ing and upscaling. We demonstrate our ideas on a realistic
Middle East-type fractured reservoir system.
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1 Introduction

Realistic description of uncertainty and predictive power
of reservoir models is dependent upon the ability to model
geological phenomena. This is especially true for naturally
fractured reservoirs (NFR), which can bear risks such as
early water breakthrough and poor oil recovery. However,
the evaluation and modeling of NFRs often bear shortcom-
ings. In common modeling practice, two kinds of models
for NFRs are employed: highly detailed, geologically real-
istic models built by geologists, and coarse, grid-based
models used by engineers for reservoir flow simulations
following the dual media paradigm [1–3]. The former are
complicated, complex, and time-consuming discrete frac-
ture network models (DFN); the latter are geo-cellular, i.e.,
grid-based models for use with conventional flow simula-
tors in many cases partly or entirely disconnected from the
underlying geology.

Building one geologically realistic DFN model for a
fractured reservoir can be tedious and time-consuming.
Building hundreds or even thousands of DFN models
and running flow simulation at reservoir scale for the
purpose of sensitivity analysis and uncertainty quantifica-
tion of reservoir production is infeasible for practitioners.
Simulating flow with conventional flow simulators which
requires the upscaling of the flow properties of each DFN
model to effective dual media properties on a grid is
again a time-consuming process. Therefore, limiting the
DFN modeling and upscaling, and instead directly mod-
eling the effective properties in a geologically consistent
manner would be advantageous. However, natural fractures
comprise a complex system [4] and their characteriza-
tion in the reservoir is associated with many uncertain-
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ties (e.g., [5]) which must be captured in the dual media
model.

We propose a methodology based on multiple-point
statistics (MPS) for fast and geologically consistent gener-
ation of dual media models for the purpose of uncertainty
modeling in NFRs. MPS represents a group of geostatisti-
cal algorithms for stochastic pattern reproduction ([6–8]; an
overview is provided in [9, 10]). MPS borrows the patterns
to be reproduced from so-called training images and has
been successfully applied to simulate depositional structures
of rocks (facies and petrophysical properties). The bottle-
neck for applying MPS wide-scale is the training image.
We describe a methodology to obtain a manageable set of
training images for the fractured medium of dual medium
models. Creating such a set achieves two goals: firstly,
rapid dual medium generation via MPS while maintain-
ing geological realism, and secondly, realistic dual medium
scenarios and therefore realistic uncertainty. In structural
modeling [11, 12] as well as facies modeling [13–16], such
(discrete) scenario-type uncertainty has proven to be one of
the critical sources of geological uncertainty.

To obtain the set of training images, an extensive set of
DFNs representing potential geological scenarios is gener-
ated and upscaled to effective properties. For each model,
we also generate a binary map of the flow model. This
binary map is derived from the key observation that in the
reservoir flow model, not all grid blocks must have two
media—only the grid blocks which contain a connected
fracture network should be described in this manner [17].
The pattern in this map is based on fracture intensity per
grid cell and determines which grid cells should be repre-
sented by a dual medium (connected fractures and matrix)
or a single medium (disconnected fractures and matrix)
in the flow simulation. These patterns are clustered based
on their pattern-based distances to identify representative
models to serve as training images. The training images
are then employed to generate directly flow models with
MPS.

We would like to address three common misunderstand-
ings upfront. First, we do not construct training images for
DFN models; instead, we work with effective properties in
the grid domain. Second, we do not discretize fractures on
the grid; instead, we deal with a large number of fractures
per grid cell. We also do not simulate large-scale fractures
or fracture corridors by means of MPS (e.g., [18]). Third,
the aim of this workflow is not to build a small number
of highly accurate fracture models; instead, we are inter-
ested in evaluating realistic uncertainty of the reservoir flow
response which requires constructing a large number of flow
models.

2 Methodology

2.1 Overview

First we will outline broadly the methodology and then use
an example to illustrate the details of this workflow. Our
workflow consists of various components that already exist
in the literature; hence, the novelty lies in integrating them
into a practical workflow applicable to real field applica-
tions. This also means that various components (such as
upscaling) can be exchanged based on one’s own personal
experience.

Step 1: This step consists of the usual geological work
relating to understanding and describing the frac-
tured system. The goal here is to specify the vari-
ous concepts as well as input parameters related to
fractured modeling.

Step 2: Generation of DFN scenarios based on the
data gathered in step 1. Experimental design
can be used to limit the amount of scenarios
generated.

Step 3: Translation of the DFN models to dual medium
scenarios consisting of modeling an indicator for
dual and single medium cells. This step upscales
the DFN models to effective properties for dual
medium. From this step on, we no longer deal with
DFNs. The translation of the upscaled scenarios
into a set of dual medium scenarios is represented
through patterns.

Step 4: Selection of a set of representative dual medium
scenarios by means of distance-based clustering.
This scenario selection is based purely on the
patterns found on the upscaled models; no flow
simulation is applied at this point.

Step 5: Use the representative scenarios as training images
for MPS to generate nonstationary geostatistical
realizations of effective properties ready for flow
simulation.

Step 6: Run flow simulation to assess uncertainty of a
desired flow response.

2.2 Case study description

To demonstrate and illustrate our methodology, we have
constructed a model analogous to fractured reservoirs in the
Middle East (e.g., [19]). In this synthetic but realistic model,
we aim to represent various elements common to fractured
reservoirs such as uncertainty in interpretation or presence
of seismic data.



Comput Geosci (2013) 17:1015–1031 1017

The dominating structure in our case is a North–South
striking anticline which is accompanied by buckle folds
to both sides (Fig. 1a). The model extends 18.6 km in X

(East–West) and 15.7 km in Y (North–South) direction rep-
resented by 102 × 86 grid cells with a horizontal dimension
of 600 × 600 ft. The model has one layer with a thick-
ness of 25 ft. The initial oil–water contact is at 6,100 ft.
The reservoir is produced with 45 wells, of which 18 are

water injections wells and 27 are production wells. There
is also pressure support from the aquifer. The position of
the wells is shown in Fig. 1a. Injectors are marked blue and
producers are red. The water injection takes place at a con-
stant bottom hole pressure of 4,000 psi with a maximum
allowable rate of 5,000 stb/day. The total liquid production
rate at each well is set to 2,000 stb/day. Throughout the
production time of 3,000 days, the oil pressure stays above

Fig. 1 a The reservoir model
extends 18.6 km in X
(East–West) and 15.7 km in Y
(North–South) directions and
comprises a North–South
striking anticline. The 18
injectors are placed to both sides
of the anticline, and the 27
producers are located around the
hinge. The grid consists of
102 × 86 × 1 cells with cell
dimensions of
600 × 600 × 25 ft. b A complex
DFN model for the reservoir
consisting of approximately
12,000 individual fractures
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bubble point (no free gas). We employed a streamline sim-
ulator using the dual-porosity, single-permeability model to
calculate the flow responses [20]. We are interesting in the
surface oil production rate and cumulative oil production.
Note that since there is no free gas, and we are imposing
total rate at the producers, the sum of the oil and water rate
is constant.

The permeability and porosity of the rock matrix is not
the focus of this modeling approach and is kept constant
at 200 mD and 20 %—typical values for carbonate reser-
voirs in the Middle East [21]. From here on, the term
“effective properties” refers to the effective properties of
the fractured medium in a dual medium approach (Fig. 2),
specifically the fracture porosity (∅f ), the fracture perme-
abilities (kfx, kfy, kf z), and the shape factor sigma (σ ). The
sigma shape factor describes the fracture/matrix exchange
[22].

00.0 – 00.7 %
00.7 – 02.0 %
02.0 – 03.4 %
03.4 – 04.7 %
04.7 – 06.1 % 
06.1 – 07.4 %
07.4 – 08.7 %
08.7 – 10.1 %
10.1 – 11.4 %
11.4 – 12.8 %
12.8 – 13.5 %

a

b

Fig. 2 Orientation distribution of one realization of one fracture set
consisting of 12,167 individual fractures. The trend of the pole vectors
to the fractures was set to 45◦ during fracture generation. The spread
of the poles is determined by the dispersion factor of the Fisher orien-
tation distribution (8 in this example). a Schmidt net with equal area
projection of the poles in the lower hemisphere, generated using RFOC
[42–47]. b Contoured density of the poles, generated using Fracman

In our case study, as well as in real reservoirs, multiple
geological scenarios of the fracture system arise from the
interpretation of data such as well-log, borehole imaging,
seismic and /or outcrop data. The hinges of folds—here the
anticline structure—tend to have higher intensity of frac-
tures (e.g., [23, 24]). Although the analysis of the curvature
can be used as an indicator for fracture intensity (e.g., [25]),
orientation of fractures are difficult to predict (e.g., [26]).
A seismic coherence attribute may indicate the presence of
fracture networks. A low coherence typically corresponds
to a higher intensity of fractures (e.g., [27, 28]). The forma-
tion of fracture corridors is a common feature of fractured
reservoirs (e.g., [29, 30]). In our case, we mimic corridors
of high fracture intensity as it can be derived from seismic
coherence (Fig. 7a). We now implement the various details
of our methodology within the context of this case.

2.3 Generating the DFN models (step 1 and 2)

To obtain DFN models reflecting the potential scenarios, we
designed a full factorial design experiment on conceptual
as well as parameter uncertainties (although the modeler
may opt for a full Monte Carlo should this be feasible).
The conceptual uncertainty comprises the spatial distribu-
tion of fracture intensity and the presence (or absence) of
different fracture sets. The curvature of the anticline and
corridors of decreased seismic coherence are assumed to
be indicators for variations in the fracture intensity. Frac-
ture intensity can also be regarded as an indirect measure
of fracture intersections and is expressed as the P32 describ-
ing fracture area per volume [31]. For our models, we have
set the average target intensity to 0.06. Variations in the
length, trend, and orientation distribution of the fractures are
considered as parameter uncertainties. Fracture parameters
such as length and orientation are sampled from power law
and Fisher distributions, respectively, during the stochastic
generation of a DFN [32, 33]. Large-scale fractures, i.e.,
faults, providing long-distance connectivity (or barriers) are
not modeled here. In the scope of this study, we considered
the hydraulic parameters of the explicit fractures perme-
ability, aperture, and compressibility as constant with the
values 10D, 300 μm, and 10−5kPa−1, respectively. In real-
ity, these values may vary due to the differences in length
and roughness of individual fractures [34–36]. The disper-
sion or concentration factor, respectively, of 8 for the Fisher
orientation distribution provides a large degree of freedom
in the three-dimensional fracture orientation allowing frac-
tures from one set to intersect (Fig. 2). The experimental
design shown in Table 1 led to 156 (24 × 32 +22 × 3) DFN
models. To account for the spatial uncertainty of the DFN,
we have generated four realizations for each scenario lead-
ing to a total of 624 models. One DFN realization is shown
in Fig. 1b.
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Table 1 Parameter variations
used for the experimental
design leading to 156
combinations; shown here, the
scenarios of the fracture
network

Presence of second fracture set Yes No

Fracture set 1: size (powerlaw distribution of equiv. 400 ft 600 ft

radius with D = 2, trunc. at 3,000 ft, aspect ratio 2:1)

Fracture set 2: size (powerlaw distribution of equiv. 200 ft 400 ft

radius with D = 2, trunc. at 3,000 ft, aspect ratio 2:1)

Fracture set 1: trend of pole vectors (orientation 0◦ 45◦

distribution: Fisher with dispersion = 8)

Fracture set 2: trend of pole vectors (orientation 30◦ 60◦

distribution: Fisher with dispersion = 8)

Fracture set 1: intensity correlated with No Weak Strong

folding (curvature)

Fracture set 2: intensity correlated with fracture No Weak Strong

corridor (seismic coherence)

2.4 Translating DFN models to dual medium models
and effective properties (step 3)

In this step, we translate the discrete fracture networks
to a dual medium reservoir models by determining which
grid cells are single medium (matrix only) and which cells
qualify for dual medium. We then populate the fractured
medium of the dual medium cells with effective properties
(Fig. 3). Each DFN is represented by a dual medium model

for use with conventional flow simulators. The methods
described in this section are standard approaches and do not
constitute the main contribution of this paper. In the scope
of this study, we did not consider large fractures with long-
range connectivity. In the presented test case, the fracture
intensity is varying between grid cells. Grid cells with-
out sufficient fracture connectivity are simulated as single
medium, i.e., only the properties of the matrix are consid-
ered. To control which cells are simulated as dual medium,

Fig. 3 Only grid cells with
sufficient fracture connectivity
are simulated as dual medium,
for the case study here in single-
permeability/dual-porosity
mode. The remaining cells are
simulated as single medium, i.e.,
only the matrix (nonfractured
medium) is considered. In
reservoirs with varying fracture
intensity not all cells are equally
fractured and consequently not
all cells are modeled as dual
medium. The detection of dual
medium cells is based on a
cutoff applied to fracture
porosity. Dual medium cells are
in white, single medium cells are
black. The resulting binary
pattern reflects the spatial
variability of fracture intensity
and connectivity, respectively.
To demonstrate the robustness
of the method, we increase and
decrease the threshold by 10 %
which in turn switches in
average 10 % of the grid cells
(approx. 850 cells) from single
to dual medium and vice versa
(discussed in detail in the
Section 3)
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we employed an auxiliary binary property “DPNUM”. Cells
with a DPNUM value of 1 are simulated as dual medium,
cell with DPNUM equal to 0 are run single medium. For sin-
gle medium cells, only the matrix properties are available.
Various approaches exist to detect which cells need to be
considered as dual medium. We have decided to determine
dual medium cells based on a cutoff value of the fracture
porosity, which is highly correlated with the fracture inten-
sity. The fracture porosity can be calculated rapidly based
on the volume of fractures present in one grid cell: ∅f = P32

* aperture. The histogram of the fracture porosity of one
flow model and cutoff is shown in Fig. 4. Based on this
histogram, for our experiment, we consider all cells with
fracture porosity greater than 10−5 to contain dual media.
Cells with fracture porosity less than the cutoff are consid-
ered to have disconnected fractures and thus should not be
modeled using the dual medium paradigm. In reality, cells
with the same fracture porosity or intensity, respectively, do
not necessarily show the same connectivity. A probability
function associated with the cutoff could potentially lead
to a more realistic identification of dual medium cells. A
constant cutoff appears to be a reasonable choice because
even a variation of the threshold of 10 % did not affect
the uncertainty quantification as discussed in Section 3 of
this paper. Figure 5 shows one flow model with dual media
cells (white) and single media (black). The binary pattern
reflects the underlying connected fracture network as deter-
mined by the DFN model and porosity cutoff. As discussed
in Section 3 of this paper, the binary pattern, i.e., spatial
arrangement, of dual media cells governs the flow response.
For the effective properties, the fracture porosity and sigma
factor can be obtained directly. However, the upscaling of
the fracture permeability is not trivial and can be done

kfx
x 

f 

kfy

f

y

Fig. 5 A reservoir model of the effective properties of the frac-
tured medium and sigma. The properties are only considered for dual
medium cells. The white cells of the binary DPNUM pattern map are
in dual medium mode (DPNUM = 1), the black cells are treated as
single medium (DPNUM = 0). The binary map acts as a stencil for
the effective properties

Fig. 4 Histogram of the
fracture porosity of all 8,772
grid cells of one model. Grid
cells with fracture porosity
above the cutoff at 10−5 are
handled as dual medium cells,
the rest as single medium. The
histogram shows also the
increase and decrease of the
cutoff value by 10 % as used for
the sensitivity study on the
patterns in the Section 3 of the
paper (see Figs. 12, 13, 14, and
15). Notice that for this model,
increasing the cutoff by 10 %
switches 838 cells from dual to
single medium. In the same way,
decreasing the threshold by
10 % transforms 844 cells from
single to dual medium
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analytically or flow based. We have opted for the analytical
method of Oda [37] as it is substantially faster than flow-
based upscaling. Although Oda is not accurate for grid cells
with low fracture intensity, it provides reasonable approx-
imations, and its speed makes it the method of choice for
practitioners. The workflow however allows for any upscal-
ing technique to be employed. We use a diagonal tensor
representation for fracture permeability as this is what is
currently feasible in commercial simulators.

2.5 Obtaining a representative set of training images
(step 4)

Due to the complexity of fracture modeling (and its large
uncertainty), one may not be able to identify easily impact-
ing input parameters that affect flow. Yet, in real cases,
reservoir engineers can rarely handle hundreds of fracture
models or scenarios. Therefore, we propose to reduce the
set of all 156 possible scenarios to a more manageable
set. We propose not to work on parameter reduction but
on pattern reduction [38]. At the same time, this reduced
set needs to cover a similar uncertainty in flow as the

original set. This will be demonstrated later on in this
paper.

To reduce the set of patterns yet maintain pattern diver-
sity, we employ a distance-based selection approach [15,
16, 38, 39]. The methodology presented in those papers was
applied to facies models (categorical variables), and due
to the translation of DFN to dual medium patterns, now
becomes feasible on fractured reservoirs modeled using dual
medium flow behavior.

The selection approach aims at representing uncertainty
through distances between models, in this case the 156
scenarios. This distance then allows representing high-
dimensional models in low-dimensional space using mul-
tidimensional scaling (MDS) and allows for grouping sce-
narios into clusters with similar pattern characteristics. As
described earlier in this paper, we have generated four
realizations of each scenario leading to 624 patterns. To
calculate the distance between the 624 binary patterns, we
employ the modified Hausdorff distances (MHD), a dis-
tance which has been shown to be effective in distinguishing
patterns containing thin lines and sharp objects [40]. A k-
medoid clustering technique [41, 42] applied in metric space

Fig. 6 The modified Hausdorff
distance, a pattern-based
distance, between the 624 binary
maps (4 realizations of 156
scenarios) is mapped into metric
space with multidimensional
scaling. No absolute scale is
shown for location of the data
points because only the relative
mutual distance is important.
Similar patterns are located
closer together. Representative
patterns are identified with
k-medoids clustering and will be
used as training images
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Fig. 7 Overview of the workflow steps take to obtain representative
binary DPNUM patterns, i.e., conceptual flow scenarios, as training
images without running flow simulation (cf. steps 1–5 in Fig. 1). The
conceptual and parameter uncertainty originating from the geologi-
cal interpretations (a) is captured by an experimental design leading
to 156 DFN models (b). For each DFN, four realizations are gener-
ated totaling 624 models. All DFN models are upscaled to effective

properties (c) and translated to a binary DPNUM map for the flow
model (d). The binary map determines for which grid cells the
fractured medium is considered, i.e., which grid cells are run in dual-
porosity mode. e K-medoid clustering in metric space is applied to
modified Hausdorff distance of the patterns to identify representative
training images
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then allows the selection of a limited set of representative
scenarios. We performed the clustering on the first two
dimensions of the Euclidean space created by MDS for
which the silhouette technique [43] indicates an optimal
number of nine clusters. MHD separates the patterns clearly
into well-defined clusters. The patterns corresponding to the
nine medoids are then used as training images (Fig. 6) in
the following steps of the workflow, and are capable of cap-
turing uncertainty reasonably as shown in Section 3. Note
that the use of a MHD distance does not require running any
flow simulation; hence, the selection technique is instan-
taneous. The workflow up to this stage is summarized in
Fig. 7.

2.6 Generating fracture flow patterns from training images
(step 5)

We used the MPS algorithm dispat [44] implemented in
SGeMS [45] to generate geostatistical binary patterns for

the reservoir based on the nine training images obtained
in the previous steps (Fig. 7). This allows modeling the
within-scenario spatial uncertainty, where each scenario
is represented by a single training image. Dispat is a
public domain fast pattern-based MPS algorithm allow-
ing the use of non-stationary training images [46] (https://
github.com/SCRFpublic/DisPat). A comparison of the pat-
terns obtained from initial DFN models and patterns gen-
erated with MPS is shown in Fig. 8. Once the basic
flow model represented through the binary map is gen-
erated, the dual medium cells (shown in white) are pop-
ulated with appropriate effective properties for the frac-
tured medium. For simplification, we populate the frac-
tured medium with the constant average of each property,
although this is not a restriction to the methodology. How
this is done specifically for this case as well as the impact
on the flow response is discussed in Section 3, since this
is not part of the intended original contribution of this
paper.

Fig. 8 Comparison of binary
DPNUM patterns obtained from
DFN workflow (cf. steps 1–3 of
the proposed workflow) and
from the MPS workflow (cf.
steps 6–7 of the proposed
workflow). While it took several
minutes to generate one pattern
with the DFN workflow, it took
only 50 ms to simulate one
pattern with the MPS algorithm
dispat

4 realizations from DFN workflow 4 realizations from MPS workflow 

https://github.com/SCRFpublic/DisPat
https://github.com/SCRFpublic/DisPat
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3 Results

The goal of this study is to assess rapidly the field pro-
duction performance of a large number of models. The
clustering of patterns based on the MHD was performed on
the entire reservoir scale; hence, the selected nine patterns
are targeted to predict global field production, not individ-
ual well performance. In this section, we will first assess
which factor has the largest impact on field production:
dual medium properties (DPNUM) versus effective prop-
erties (kf , ∅f , σ ). Secondly, we will compare the range of
uncertainty, i.e., the variability, in flow responses between
two workflows to which we refer for convenience as “DFN
workflow” and “MPS workflow”. The DFN workflow con-
sists of generating DFN models, upscaling the fractures
to effective properties, and running flow simulations on
the dual medium models. This would be the more stan-
dard approach. In the MPS workflow, the dual medium
models are directly generated with MPS (step 5 of the work-
flow proposed in this paper) based on the selected training
images obtained in step 4, and then flow simulated as well.
This comparison will therefore assess the effectiveness of
the proposed workflow.

3.1 Impact of dual medium pattern versus effective
properties

Our contribution focusses on dual medium patterns
(DPNUM) and spatial distribution. However, flow simula-
tion also requires specifying effective medium properties,
such as porosity and permeability for both dual and sin-
gle medium cells, as well as the shape factor (σ ). Since
the patterns generated with MPS are variations of the pat-
terns in the training image, it is not possible to simply copy
the effective properties associated with each training image.
To populate the dual medium cells of MPS-simulated pat-
terns rapidly with reasonable effective properties for the
fractured medium, we have decided to use the constant
average of each property (Fig. 9). The average is calcu-
lated for each fracture property (kf , φf , σ ) associated with
the training image individually while only considering dual
medium cells. As we will show in this section, using a
constant average does not impact the flow response in our
case because the dual medium pattern is the most impact-
ing factor. In the following, we will compare different ways
to populate the dual medium cells with effective properties
only focusing on the fractured medium because in our case,
the single medium cells contain only the properties of the
matrix which are fixed and constant. To evaluate the impact
of the dual medium pattern versus the effective properties,
we populated the fractured medium of dual medium cells

constant average of DM cells (DPNUM = 1)

DPNUM

DPNUM

 

  
 

Fig. 9 Calculation of the constant average for each property of the
fractured medium and sigma. Only dual medium cells as indicated by
DPNUM are considered. The constant average is used to populate the
fractured medium of DPNUM patterns simulated with dispat (MPS).
In this particular example, the same DPNUM pattern is populated with
effective properties (cf. path 2 in flow diagram of Fig. 10)

of two dual medium patterns in three different fashions (see
diagram in Fig. 10):

1. Copy original properties associated with the dual
medium pattern

2. Calculate the constant average for each original
property

3. Multiply/divide the constant average of each property by
a factor of 10 through a 34 full factorial design (Table 2).

To be able to compare (2) and (3) with the flow responses
resulting from the original properties, we have used two
patterns from the 624 patterns obtained from the DFN
workflow. The flow responses shown in Fig. 10 show a
clear separation of the curves into two groups related to
the two different patterns. It can also be observed that the
flow responses based on the constant average (2) prop-
erties run very close and mostly overlay with the curves
obtained by using the original properties (1). The curves of
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Fig. 10 Impact of dual medium properties (DPNUM) versus effec-
tive properties. Two different patterns (produced from two different
DFNs) and three different ways of obtaining the effective properties
are compared. The flow diagram shows three fashions of populating
the fractured medium of one dual medium pattern (DPNUM). The
same steps are applied to both DFNs. First, a DFN model is trans-
lated to a dual medium pattern (DPNUM) and upscaled to effective
properties. Besides the original effective properties from upscaling
(path 1) the same pattern is also populated in two different fashions

with effective properties. Path 2: constant average for each property
based on the original ones (cf. Fig. 9). Path 3: the averages are mul-
tiplied and divided by factor 10, respectively. The comparison of the
flow responses shows in our case that the binary dual medium patterns
(DPNUM) strongly govern the flow response, whereas the way of pop-
ulating the dual medium cells has only a minor impact: flow responses
based on the original and averaged effective properties run very close.
Even flow responses based on heavily varied (factor 10) properties can
be clearly associated with their corresponding pattern

the flow responses based on heavy variation of the effective
properties (3) diverge from the flow responses based on
the original (1) and averaged (2) properties. However, the

Table 2 Full factorial experimental design leads to 81 combinations
of effective property variations per pattern

kf x Const. avg. ×10 ÷10

kfy Const. avg. ×10 ÷10

φf Const. avg. ×10 ÷10

σ Const. avg. ×10 ÷10

differentiation of the flow responses into two distinct groups
is caused by the two patterns. Clearly, the pattern of dual
medium cells is the dominating factor.

3.2 Comparison of range of uncertainty

In this section, we will show that our proposed MPS
workflow is suitable to fully cover the uncertainty in flow
response in a fraction of the time required by the DFN
workflow. Therefore, we will evaluate and compare flow
responses of reservoir models generated by the two work-
flows (see flow diagram in upper half of Fig. 11). For the
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Fig. 11 Comparison of uncertainty in the flow responses for fractured
reservoirs obtained from the proposed training images based MPS
workflow with the DFN-based workflow. Flow was simulated for 624
dual media model originating from DFN models, and for 270 dual

media models generated with the MPS workflow. P10 and P90 of both
workflows are shown in both plots to facilitate comparison. P10 and
P90 of the MPS-based workflow describe at least the same range of
uncertainty as the DFN workflow for fractured reservoirs

DFN workflow, we simulated the flow responses of the
624 reservoir dual medium models created in steps 1–4.
These dual medium flow models are obtained through the

upscaling of the actual DFN models. The process of DFN
generation and upscaling to effective properties took half a
minute per model. The time to generate the 624 models was
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Fig. 12 To compare the impact
of the threshold/cutoff on
fracture porosity used during the
pattern production in step 3 of
the workflow, we rerun the
workflow for two additional
thresholds by increasing and
decreasing the original threshold
by 10 %

6 h. For the MPS workflow, we simulated the flow response
for 270 dual medium models in the following way: based
on the nine training images identified in step 5, we gen-
erated 30 realizations with the MPS algorithm dispat. The
variance in flow response from these 30 models originates
from the differences in the reproduced binary patterns. The
creation of one binary pattern with dispat took between
50 and 100 ms; the subsequent population with effective
properties is essentially instantaneous. The time to generate
the 270 DPNUM patterns was 20 s. Populating the cells of

all models with effective fracture properties via the
averaging method took 30 s. For the total time, we are
looking at 1 min of the MPS workflow versus 1 day for
the DFN workflow. Note that the MPS workflow ini-
tially depends on the DFN workflow for the creation
of training images. In practice, however, the creation of
the training image via the DFN workflow is an initial
investment which allows later to generate thousands of
earth models with the MPS workflow independently and
rapidly.

Fig. 13 Training images
identified among 624 DPNUM
patterns based on a 10 %
increased threshold on fracture
porosity. The increase of the
threshold leads to more delicate
patterns

f cut-off +10% 
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We will now compare the flow responses of the 624
flow models obtained from the DFN workflow with the
270 flow responses from the MPS workflow. The uncer-
tainty quantification is based on the quantiles P10 and P90.
The lower part of Fig. 11 shows the flow responses from
both workflows. On the left side are the 624 flow responses
from the DFN workflow, and on the right side are the 270
flow responses from the MPS workflow. The quantiles P10
and P90 of both workflows are shown in the left and the
right side of Fig. 11 to facilitate comparison. The resulting
flow responses show that the uncertainty in flow responses
obtained from the flow models generated with the MPS-
based workflow capture uncertainty reasonably. The curves
for P10 and P90 run very close. In this reservoir study,
the range of uncertainty covered by the MPS workflow is
slightly greater.

3.3 Impact of threshold on patterns and captured
uncertainty

In this section, we will evaluate the impact of the cut-
off applied to the fracture porosity (∅f ) when creating the

binary dual medium models (DPNUM) in step 3 of the
DFN workflow. Increasing or lowering the cutoff will lead
to less or more dual medium cells, and change the appear-
ance of the patterns. Increasing the threshold lowers the
number of dual medium cells and leads to more refined
patterns. Lowering the threshold increases the number of
dual medium cells and leads to more coarse patterns. To
evaluate the sensitivity to the fracture porosity threshold,
we have increased and lowered the threshold by 10 % in
step 3 of the DFN workflow. Changing the threshold by
10 % switches on average also 10 % of the grid cells
from single to dual medium and vice versa (Fig. 3). For
the upper as well as for the lower threshold, we have
applied the complete workflow. The steps taken are sum-
marized in Fig. 12. In short, starting from the original
624 DFN models, we produced two additional sets of
624 binary patterns each corresponding to the two thresh-
old variations (+10 %, −10 %), calculated the modified
Hausdorff distance between each group of 624 patterns
separately, executed multidimensional scaling (MDS) and
k-medoid clustering to identify training images in each
group, generated 30 realizations for each training image

Fig. 14 Training images
identified among 624 DPNUM
patterns based on a 10 %
decreased threshold on fracture
porosity. The decrease of the
threshold leads to coarser
patterns

f cut-off -10% 
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Fig. 15 Evaluation of the
impact of the threshold used for
DPNUM pattern production on
the uncertainty in flow
responses. For each of the three
different thresholds, the MPS
workflow was run and dual
medium models were generated
for flow simulation. The training
images employed are shown in
Figs. 6, 13, and 14. In our case
the variation of the threshold by
10 % does not influence the
range of uncertainty
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with dispat (MPS), populated the dual medium cells with
effective properties, and performed flow simulations. For
a detailed explanation of the workflow, please refer to
Section 2 of this paper. In the group with 10 % increased
threshold, we have identified nine training images shown
in Fig. 13. For the 10 % decreased threshold, we also have
identified nine training images show in Fig. 14. Although
the patterns become either more refined or coarse in com-
parison to the patterns obtained using the original thresh-
old, the basic structure does not change. All three levels
of the threshold lead to nine training images. Figure 15
compares the range of uncertainty (P10, P90) calculated
from the flow responses based on three different fracture
porosity thresholds (270 flow responses per threshold): orig-
inal (10−5), +10 %, −10 %. The P10 and P90 for each
threshold run very close and capture similar ranges of
uncertainty.

4 Conclusions

In this paper, we have introduced a pattern and training
image-based approach to dual-porosity descriptions of nat-
urally fractured reservoirs. The patterns of effective prop-
erties are obtained from DFN to preserve geologic consis-
tency. Once relevant patterns are obtained, the tedious task
of DFN modeling is no longer required. The generation of
large numbers of earth models with MPS can be achieved in
a fraction of the time and with far fewer computer resources
necessary to generate the same amount of DFN models.
We have shown that the pattern-based approach is able
to capture uncertainty of the flow responses reasonably.
Due to the selection of already available components, the
proposed workflow will be easy to integrate into existing
reservoir modeling software. Further, the modular design
of the workflow provides the freedom to employ different
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techniques, e.g., for clustering, MPS algorithm, and flow
simulations.
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